Tuyển tập bài toán chuyên đề giá trị tuyệt đối lớp 7 - HocVienKhoiNghiep.Edu.Vn
Rate this post

Ngày đăng: 29/10/2014, 19:27

Xem thêm: Công Thức Tính Thể Tích Khối Cầu Nhanh Và Chính Xác Nhất – VUIHOC

II. Các dạng toán : I. Tìm giá trị của x thoả mãn đẳng thức có chứa dấu giá trị tuyệt đối: 1. Dạng 1 : kA(x) = ( Trong đó A(x) là biểu thức chứa x, k là một số cho trước ) * Cách giải: – Nếu k 0 thì ta có:    −= = ⇒= kxA kxA kxA )( )( )( Bài 1.1: Tìm x, biết: a) 452 =−x b) 4 1 2 4 5 3 1 =−− x c) 3 1 5 1 2 1 =+− x d) 8 7 12 4 3 =+− x Bài 1.2: Tìm x, biết: a) 2 1 322 =−x b) 5,42535,7 −=−− x c) 15,275,3 15 4 −−=−−+x Bài 1.3: Tìm x, biết: a) 51132 =+−x b) 31 2 =− x c) 5,3 2 1 5 2 =++− x d) 5 1 2 3 1 =−x Bài 1.4: Tìm x, biết: a) %5 4 3 4 1 =−+x b) 4 5 4 1 2 3 2 − =−− x c) 4 7 4 3 5 4 2 3 =−+ x d) 6 5 3 5 2 1 4 3 5,4 =+− x Bài 1.5: Tìm x, biết: a) 2 3 1 : 4 9 5,6 =+− x b) 2 7 5 1 4: 2 3 4 11 =−+ x c) 3 2 1 4 3 :5,2 4 15 =+− x d) 6 3 2 4 :3 5 21 =−+ x 2. Dạng 2: B(x)A(x) = ( Trong đó A(x) và B(x) là hai biểu thức chứa x ) * Cách giải: Vận dụng tính chất:    −= = ⇔= ba ba ba ta có:    −= = ⇒= )()( )()( )()( xBxA xBxA xBxA Bài 2.1: Tìm x, biết: a) 245 +=− xx b) 02332 =+−− xx c) 3432 −=+ xx d) 06517 =+−+ xx Bài 2.2: Tìm x, biết: a) 14 2 1 2 3 −=+ xx b) 0 5 3 8 5 2 7 4 5 =+−− xx c) 4 1 3 4 3 2 5 7 −=+ xx d) 05 2 1 6 5 8 7 =+−+ xx 3. Dạng 3: B(x)A(x) = ( Trong đó A(x) và B(x) là hai biểu thức chứa x ) 1 * Cách 1: Ta thấy nếu B(x) 0 ta giải như sau: mBA =+ (1) Do 0≥A nên từ (1) ta có: mB ≤≤0 từ đó tìm giá trị của B và A tương ứng. Bài 1.1: Tìm cặp số nguyên ( x, y) thoả mãn: a) 020082007 =−+− yx b) 032 =++−− yyx c) ( ) 012 2 =−++ yyx Bài 1.2: Tìm cặp số nguyên ( x, y) thoả mãn: a) 043 5 =++− yyx b) ( ) 035 4 =−+−− yyx c) 02313 =++−+ yyx Bài 1.3: Tìm cặp số nguyên (x, y ) thoả mãn: a) 324 =−++ yx b) 4112 =−++ yx c) 553 =++ yx d) 7325 =++ yx Bài 1.4: Tìm cặp số nguyên ( x, y ) thoả mãn: a) 5453 =++− yx b) 121246 =−++ yx c) 10332 =++ yx d) 21343 =++ yx Bài 1.5: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) 323 2 −−= xy b) 15 2 −−= xy c) 432 2 +−= xy d) 2123 2 −−= xy 2. Dạng 2: mBA 0. * Cách giải: Đánh giá mBA +− xx d) ( )( ) 02513 >−+ xx Bài 4.2: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) ( )( ) 112 +=+− yxx b) ( )( ) yxx =−+ 13 c) ( )( ) 21252 ++=−− yxx Bài 4.3: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) ( )( ) 1231 +=−+ yxx b) ( )( ) 1152 =+−−− yxx c) ( )( ) 0253 =−+−− yxx 5. Dạng 5: Sử dụng phương pháp đối lập hai vế của đẳng thức: * Cách giải: Tìm x, y thoả mãn đẳng thức: A = B Đánh giá: mA ≥ (1) Đánh giá: mB ≤ (2) Từ (1) và (2) ta có:    = = ⇔= mB mA BA Bài 5.1: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) ( ) 2 2312 +−=−++ yxx b) 31 12 15 ++ =−+− y xx 6 c) ( ) 262 10 53 2 +− =++ x y d) 33 6 31 ++ =−+− y xx Bài 5.2: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) ( ) 252 8 1232 2 +− =−++ y xx b) 22 16 13 ++− =−++ yy xx c) ( ) 23 12 5313 2 ++ =−++ y xx d) 24 10 512 +− =+−− y yx Bài 5.3: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) ( ) 31 14 72 2 −+− =+−+ yy yx b) ( ) 523 20 42 2 ++ =++ y x c) 22008 6 320072 +− =+− y x d) 653 30 52 ++ =+++ y yx III – Rút gọn biểu thức chứa dấu giá trị tuyệt đối: • Cách giải chung: Xét điều kiện bỏ dấu giá trị tuyệt đối rồi thu gọn: Bài 1: Rút gọn biểu thức sau với 1,45,3 ≤≤ x a) xxA −+−= 1,45,3 b) 1,45,3 −++−= xxB Bài 2: Rút gọn biểu thức sau khi x 0 ==============&=&=&============== IV.Tính giá trị biểu thức: Bài 1: Tính giá trị của biểu thức: a) M = a + 2ab – b với 75,0;5,1 −== ba b) N = b a 2 2 − với 75,0;5,1 −== ba Bài 2: Tính giá trị của biểu thức: a) yxyxA −+= 22 với 4 3 ;5,2 − == yx b) babaB −−= 33 với 25,0; 3 1 == ba c) b a C 3 3 5 −= với 25,0; 3 1 == ba d) 123 2 +−= xxD với 2 1 =x Bài 3: Tính giá trị của các biểu thức: 7 a) 4236 23 ++−= xxxA với 3 2− =x b) yxB 32 −= với 3; 2 1 −== yx c) xxC −−−= 1322 với x = 4 d) 13 175 2 − +− = x xx D với 2 1 =x V.Tìm giá trị lớn nhất – nhỏ nhất của một biểu thức chứa dấu giá trị tuyệt đối : 1. Dạng 1: Sử dụng tính chất không âm của giá trị tuyệt đối: * Cách giải chủ yếu là từ tính chất không âm của giá trị tuyệt đối vận dụng tính chất của bất đẳng thức để đánh giá giá trị của biểu thức: Bài 1.1 : Tìm giá trị lớn nhất của các biểu thức: a) 5,35,0 −−= xA b) 24,1 −−−= xB c) 54 23 − + = x x C d) 13 32 − + = x x D e) 5,125,5 −−= xE f) 1432,10 −−−= xF g) 123254 +−−−= yxG h) 8,55,2 8,5 +− = x H i) 8,55,2 −−−= xI k) 2410 −−= xK l) 125 −−= xL m) 32 1 +− = x M n) 453 12 2 ++ += x N Bài 1.2: Tìm giá trị nhỏ nhất của biểu thức: a) xA −+= 4,37,1 b) 5,38,2 −+= xB c) xC −+= 3,47,3 d) 2,144,83 −+= xD e) 5,175,7534 +++−= yxE f) 8,55,2 +−= xF g) 8,29,4 −+= xG h) 7 3 5 2 +−= xH i) xI −+= 9,15,1 k) 4132 −−= xK l) 1232 +−= xL m) 1415 −−= xM Bài 1.3: Tìm giá trị lớn nhất của biểu thức: a) 3734 15 5 ++ += x A b) 721158 21 3 1 +− + − = x B c) 85453 20 5 4 ++++ += yx C d) 612322 24 6 +++− +−= xyx D e) ( ) 14553 21 3 2 2 ++++ += xyx E Bài 1.4: Tìm giá trị lớn nhất của biểu thức: a) 457 11572 ++ ++ = x x A b) 6722 1372 ++ ++ = y y B c) 816 32115 ++ ++ = x x C Bài 1.5: Tìm giá trị nhỏ nhất của biểu thức: a) 24754 8 5 ++ − += x A b) 35865 14 5 6 +− −= y B c) 351233 28 12 15 +++− −= xyx C Bài 1.6: Tìm giá trị nhỏ nhất của biểu thức: 8 a) 5643 336421 ++ ++ = x x A b) 1452 1456 ++ ++ = y y B c) 1273 68715 ++ −+− = x x C 2. Dạng 2: Xét điều kiện bỏ dấu giá trị tuyệt đối xác định khoảng giá trị của biểu thức: Bài 2.1: Tìm giá trị nhỏ nhất của biểu thức: a) xxA −++= 25 b) 6212 ++−= xxB c) xxC 3853 −++= d) 5434 −++= xxD e) xxE 5365 ++−= f) xxF 2572 −++= Bài 2.2 : Tìm giá trị nhỏ nhất của biểu thức: a) 5232 ++−= xxA b) xxB 3413 −+−= c) 1454 −++= xxC Bài 2.3: Tìm giá trị lớn nhất của biểu thức: a) 45 ++−−= xxA b) 4232 +++−= xxB c) xxC 3713 −+−−= Bài 2.4: Tìm giá trị lớn nhất của biểu thức: a) 6252 ++−−= xxA b) xxB 3843 −+−−= c) 7555 ++−−= xxC Bài 2.5 : Tìm giá trị nhỏ nhất của biểu thức: a) 51 −++= xxA b) 562 +−+−= xxB c) 1242 ++−= xxC 3. Dạng 3: Sử dụng bất đẳng thức baba +≥+ Bài 3.1: Tìm giá trị nhỏ nhất của biểu thức: a) 32 −++= xxA b) 5242 ++−= xxB c) 1323 ++−= xxC Bài 3.2: Tìm giá trị nhỏ nhất của biểu thức: a) 415 ++++= xxA b) 82373 +++−= xxB c) 125434 +−++= xxC Bài 3.3: Tìm giá trị nhỏ nhất của biểu thức: a) 7523 −+−++= xxxA b) 51431 +−+−++= xxxB c) 35242 −+−++= xxxC d) 311653 +−++++= xxxD Bài 3.4 : Cho x + y = 5 tìm giá trị nhỏ nhất của biểu thức: 21 −++= yxA Bài 3.5: Cho x – y = 3, tìm giá trị của biểu thức: 16 ++−= yxB Bài 3.6: Cho x – y = 2 tìm giá trị nhỏ nhất của biểu thức: 1212 +++= yxC Bài 3.7: Cho 2x+y = 3 tìm giá trị nhỏ nhất của biểu thức: 2232 ++++= yxD 9. biết: a) xx =+− 55 b) 77 =−+ xx c) xx 3443 =+− d) xx 272 7 =+− 4. Dạng 4: Đẳng thức chứa nhiều dấu giá trị tuyệt đối: * Cách giải: Lập bảng xét điều kiện bỏ dấu giá trị tuyệt đối: mxCxBxA =++ )()()( Căn. một biểu thức chứa dấu giá trị tuyệt đối: 1. Dạng 1: Sử dụng tính chất không âm của giá trị tuyệt đối: * Cách giải chủ yếu là từ tính chất không âm của giá trị tuyệt đối vận dụng tính chất. ) 14553 21 3 2 2 ++++ += xyx E Bài 1.4: Tìm giá trị lớn nhất của biểu thức: a) 4 57 11 572 ++ ++ = x x A b) 672 2 1 372 ++ ++ = y y B c) 816 32115 ++ ++ = x x C Bài 1.5: Tìm giá trị nhỏ nhất của biểu thức: a) 2 475 4 8 5 ++ − += x A b)

Xem thêm: Định lý pytago – Hướng dẫn giải bài tập Hình học lớp 7

Source: https://thcsbevandan.edu.vn
Category : Phương pháp học tập

Bình luận