Bạn đang xem tài liệu “Đại số 9 – Chuyên đề 3: Phương trình bậc 2 – Định luật: Vi-ét”, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Xem thêm: Định lý viet (viète) hay hệ thức viet x1 ^2, hệ thức viet x1
Chuyên đề 3: Phương trình bậc 2- ĐL Vi-ét. I- Lí thuyết. PTB2: ax2 + bx + c = 0 (a#0) 1. Cách giải. + Công thức nghiệm tổng quát (thu gọn). + Nhẩm nghiệm. 2. Định lí Vi-et thuận: 3. Định lí Vi-et đảo: u+v=S; uv=P => u,v là nghiệm pt: x2 –Sx +P =0 4. Các biểu thức thường gặp áp dụng đl Viet: x12+x22=(x1+x2)2-2x1x2 x13+x23=(x1+x2)3-3x1x2(x1+x2) x14+x24=[(x1+x2)2-2x1x2]2-2(x1x2)2 5. Xét dấu các nghiệm của ptb2: + pt có 2 nghiệm trái dấu Û P= c/a 1 34. Cho phương trình: x2 – 6x + 4 =0. Tính 35. Cho phương trình: x2 +(m + 1)x + 5-m = 0 a) Tìm m để pt có 1 nghiệm =1. Tìm nghiệm còn lại. b) Tìm m để pt có 2 nghiệm phân biệt c) Viết 1 hệ thức liên hệ giữa x1, x2 không phụ ẻ vào m. 36. Cho phương trình: x2 -2(m - 1)x + m-3 = 0 a) Giải pt khi m=2 b) Chứng minh pt luôn có nghiệm với mọi m. c) Viết 1 hệ thức liên hệ giữa x1, x2 không phụ ẻ vào m. 37. Cho phương trình ẩn x: (m - 1)x2 - 2mx + m + 1 = 0 (m 0) a) c/m phương trình trên luôn có hai nghiệm số phân biệt x1, x2. b)Tìm một hệ thức giữa x1, x2 độc lập với m. 38. Cho phương trình ẩn x: x2 – 2mx + m2 - 4 = 0 a) c/m phương trình luôn có hai nghiệm số phân biệt x1, x2. b) Viết 1 hệ thức liên hệ giữa x1, x2 không phụ ẻ vào m. 39. x2 - 2(m - 2)x + m2 + 2m - 1 = 0 a) Tìm m để pt có nghiệm . b) Tìm một hệ thức giữa x1, x2 độc lập với m. *********** 40. Cho pt: (m-1)x -2(m+1)x +m+4 =0 (m#1) a) c/m pt có nghiệm với mọi m b) c/m đẳng thức: 5(x1+x2)-4x1x2=6 41. Cho pt: x2-2(m-1)x + m2+m+2=0 a) c/m pt có nghiệm với mọi m b) c/m đẳng thức: x13+x23 – x12x2-x1x22 + 12x1+12x2+16=0 42. Cho pt: x2-2(m-1)x +m2-3m+4=0 a) Tìm m để pt có nghiệm b) c/m đẳng thức: x12+x22-2(x1+x2) -2x1x2= -8 43. Cho pt: x2-(2m-1)x –m =0 a) c/m pt có nghiệm với mọi m. b) c/m biểu thức: A= x12+x22 – 6x1x2 ³ 0 với mọi m. 44. Cho pt: x2-2(m+1)x+2m+10=0 a) Tìm m để pt có nghiệm b) c/m biểu thức: B= 10x1x2+x12+x22 ³48 với mọi m. 45. Cho phương trình: x2 - (m + 4)x + 3m + 3 = 0 - Tìm m để pt có nghiệm = 2, tìm nghiệm còn lại. - Tìm m để x1, x2 thoả mãn đk: x13 + x23 ≥ 0. 46. Cho phương trình: x2 - 2(m - 1)x - 4 = 0 - c/m pt có nghiệm với moi m. - Tìm m để x1, x2 thoả mãn đk: ẵx1ẵ + ẵx2ẵ = 5. 47. Cho pt: x2 - 2(m -1)x + 2m -4 = 0 a) CM pt có 2 nghiệm phân biệt. b) Gọi x1, x2 là 2 nghiệm của pt. Tìm giá trị nhỏ nhất của y= x12 + x22 48. Cho pt: x2 – 2mx – 6m-9 = 0 a) Tìm m để pt có 2 nghiệm phân biệt đều âm. b) ) Gọi x1, x2 là 2 nghiệm của pt. Tìm m để x12 + x22 =13 49. Cho pt: x2 + mx + n-3 = 0 a) với n=0 Chứng minh pt luôn luôn có nghiệm. b) Gọi x1, x2 là 2 nghiệm của pt. Tìm m, n thoả mãn: 50. Cho phương trình: x2 + 2(m + 2)x - 4m - 12 = 0 a) CM pt có nghiệm với mọi m. b) Tìm m để x1, x2 thoả mãn đk: x1 = x22 51. Cho phương trình: x2 –2x - (m2 - 4m +3) = 0 - CM pt có nghiệm với mọi m. - Tìm m để pt có 2 nghiệm không âm. 52. Cho phương trình: x2 + 6x - (m2 + 4m - 5) = 0 - CM pt có nghiệm với mọi m. - Tìm m để pt có 2 nghiệm âm. ***************** 1. Cho 2 pt: x2-mx-2=0 và x2-x+6m=0 Tìm m nguyên để 2 pt có ít nhất 1 nghiệm chung. [ *C1: gọi x0 là 1 nghiệm chung -> triệt tiêu x02 -> ptb1 x0 -> xét 2 th -> x0 -> thay pt -> m -> thử lại. *C2: rút m từ 2 pt -> ptb3 x -> x -> thử lại * C3: Lập hệ -> 2pt co no chung khi hệ có no duy nhất -> đặt x2=y -> giải hệ tìm x, y theo m -> từ đk: x2=y -> m ] 4. c/m với mọi m pt sau luôn có nghiệm . m(m-1)x2-(2m-1)x+1=0 5. Cho2 pt: x2+x+m=0; x2+mx+1=0 a. Tìm m để 2 pt có nghiệm chung b. Tìm m để 2 pt tđ. 6. Cho pt: x2+2mx+4=0 7. Cho phương trình ẩn x: mx2 - 2(m - 1)x + m = 0 (m 0). Gọi x1, x2 là nghiệm số của phương trình trên. CMR: nếu x21 + x22 = 2 thì phương trình trên có nghiệm số kép. 4. Cho 2 phương trình: x2 + x + m = 0 (1) x2 + mx + 1 = 0 (2) Tìm m để 2 phương trình: Có ít nhất 1 nghiệm chung. Tương đương với nhau.
Source: https://thcsbevandan.edu.vn
Category : Thông tin cần biết
Bình luận